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ABSTRACT: As composites are introduced into more complex structures with out-of-

plane loadings, a better understanding is needed of the out-of-plane, matrix-dominated

failure mechanisms. This work investigates the transverse tension fatigue characteristics

of IM6/3501 composite materials. To test the 90 degree laminae, a three-point bend test

was chosen, potentially minimizing handling and gripping issues associated with tension

tests. A finite element analysis was performed of a particular specimen configuration to

investigate the influence &specimen size on the stress distribution for a three-point bend

test. Static testing of 50 specimens of 9 different sized configurations produced a mean

transverse tensile strength of 61.3 Mpa (8.0 ksi). The smallest configuration (10.2 mm

wide, Span-to-thickness ratio of 3) consistently exhibited transverse tensile failures. A

volume scale effect was difficult to discern due to the large scatter of the data. Static

testing of 10 different specimens taken from a second panel produced a mean transverse

tensile strength of 82.7 Mpa (12.0 ksi). Weibull parameterization of the data was

possible, but due to variability in raw material and/or manufacturing, more replicates are

needed for greater confidence. Three-point flex fatigue testing of the smallest

configuration was performed on 59 specimens at various levels of the mean static

transverse tensile strength using an R ratio of 0.1 and a frequency of 20 Hz. A great deal

&scatter was seen in the data. The majority of specimens failed near the center loading

roller. To determine whether the scatter in the fatigue data is due to variability in raw

material and/or the manufacturing process, additional testing should be performed on

panels manufactured from different sources.

KEYWORDS: composite materials, graphite/epoxy, transverse tensile strength, flexural

fatigue, Weibull statistics
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INTRODUCTION

A great deal of research has been performed characterizing the in-plane fiber-dominated

properties, under both static and fatigue loading, of advanced composites materials. This

understanding is imperative wherever composite materials are used in order to gain a better

understanding of the reliability of structures when designing for maximum efficiency in weight,

volume, and payload. However, as composites are introduced into more complex loading states,

there is a need to better understand some of the out-of-plane and matrix-dominated phenomena

which have not received as much attention. For instance, consider the design of bonded

composite airframe structure where repeated, cyclic out-of-plane bending may occur. Two such

scenarios where this loading may take place are in a compressively loaded post-buckled panel or

a full-scale pressurized fuselage such as the one investigated by the NASA Advanced Composite

Technology (ACT) program. In the latter case, as a result of the internal pressurization within

each panel bay, the skin will bulge or "pillow" as shown in Figure 1. These out-of-plane

deformations create local bending moments along the skin-stiffener and skin-frame interfaces,

which in turn create shear and peel stresses along the various bondline [1].

Recent tests characterizing skin/stringer debond failures in reinforced composite panels where

the dominant loading in the skin is flexure along the edge of the frame indicate failure initiates as

transverse matrix cracks either in the skin or the flange near the flange tip [2]. When failure

initiated in the skin, transverse matrix cracks formed in the surface ply closest to the flange and

either initiated delaminations or created matrix cracks in the next lower ply, which in turn

initiated delaminations. When failure initiated in the flanges, transverse cracks formed in the

flange angle ply closest to the skin and initiated delaminations. In no configuration did failure

propagate through the adhesive bond layer. This is a significant finding in that the limiting



componentin this particularbondedstructureunderinternalpressurizationappearsnot to bethe

adhesive,but rathertheparticularskinandflangelaminates,andin particularthechoiceand

locationof theangleplies. Thefailure initiation sitecorrespondedwell with thesiteof

maximumtransversetensionstress,not thesiteof maximuminterlaminartensionsite. For the

examined skin/flange configuration, the maximum transverse tension stress at failure correlated

well with the transverse tension strength of the composite [2]. Therefore, it is important to

understand how the transverse strength of the composite degrades under repeated cyclic loading.

An extensive literature search on the topic of transverse tension fatigue revealed little in the

published literature on this particular topic. Perhaps this is a result of the focus, to-date, on in-

plane loaded structures, such as composite wing skins, where matrix cracking in fatigue may be a

rare occurrence at the relatively low operating strains dictated by low velocity impact concerns,

and where matrix cracks are fairly benign if they do occur. However, for the out-of-plane loads

experienced in a composite fuselage, the onset of matrix cracking under repeated pressurization

may trigger a catastrophic failure. Hence, the need for a transverse tension fatigue

characterization is now apparent. It should be noted that there has been extensive work, both

theoretical and experimental, focusing on transverse crack formation in laminates under fatigue

loading [3]. The laminates studied have generally consisted of 90 degree plies embedded within

a general composite laminate which usually also included 0 degree and 4-45 degree plies. The

crack formation and corresponding failure stress in the 90 degree plies of the laminates differs

substantially due to the constraining effect of the non-90 degree plies. This study will focus on

the failure behavior &unconstrained 90 degree plies.

When testing 90 degree laminae, several issues must be addressed. The first is the concern

over handling and gripping sensitivities. The handling and gripping issues may be minimized by
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testingin three-pointbendingasopposedto testingin tension. This hasanadditionalbenefit in

that relatively small specimensizesmay be used, therebyreducing the amount of material

neededfor asinglereplicate.A smallspecimensizehastheaddedbenefitof minimizing internal

heatingdueto the cyclic loading, and hence, allowing higher frequencies, with shorter testing

times, to be performed. This can become significant for a test that potentially may become a

standard for fatigue characterization. Adams, King, and Blackketter [4] evaluated the transverse

flexure test using unsized AU4 and AS4 fibers, sized AS4 fibers and EPON 828 resin. Span-to-

thickness ratios of the specimens ranged from 4.0 to 16.7. All the specimens produced tensile

failures and yielded similar strengths. The transverse flexure tests produced higher values of the

transverse tensile strength than standard transverse tensile tests, by as great as a factor of 2.5, as

demonstrated by the AS4/EPON 828 combination.

The transverse tension strength of graphite epoxy composites has been shown to exhibit a

volume dependence due to the inherent flaws in the microstructure. O'Brien and Salkepar

investigated the volume scale effect using AS4/3501-6 90 ° tensile specimens [5.]. They found

the transverse tensile strength of composite laminate depends on the volume of material stressed.

The dependence reflects the presence of inherent flaws in lamina's microstructure. As the

volume of material under tension increases, transverse tensile strength decreases. The probability

distribution function of the strength as defined by Weibull [6] is

P(cr) = 1-exp'(cCcr¢.)" (1)

where m is the shape parameter, indicating the measure of scatter in the data, and crc is the

location parameter, similar to the mean of a normal distribution. Specimens of different volumes

(2)



can then be compared via a Weibull scaling law for static loading which states

where (cr,,t_)j and (_1_)2 are the different strengths associated with the different specimens

volumes VI and V2 and m is a material constant found experimentally.

The primary objective of this study was to experimentally investigate the transverse strength

of a composite under repeated cyclic loading. In this study, multiple 90" laminates of different

specimen sizes were tested in flexure under static loading to first determine an optimum

specimen configuration with 'optimum' being defined as the smallest sized configuration

producing transverse tensile failures consistently. Using the optimum sized configuration,

multiple 90 ° laminates were tested in flexure under cyclic loading to first investigate the

behavior of transverse tensile strength under fatigue loading. The data was then used to evaluate

the validity of the Weibull scale law for fatigue loading. Additional tests were conducted at

different frequencies to determine if the transverse tension fatigue strength exhibits a frequency

dependency.
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FINITE ELEMENT ANALYSIS

Model Definition

A nonlinear static finite element analysis was performed using the pre-processing software

package PATRAN and its P3/FEA solver package. Figure 2 provides a schematic of the test set-

up with relevant dimensions while Figure 3 shows the experimental three-point bend test set-up.

A 2-D model was constructed. Due to symmetry considerations, only the right half of the

specimen was modelled. Figure 4 shows the finite element mesh of the model. The mesh

contained 1680 4-noded quadrilateral elements and 21 gap elements for a total of 3622 degrees

of freedom. The specimen geometry itself is very straight forward: half of the rectangular test

specimen. The loading and support rollers were modelled as follows. Only the lower right hand

exterior edge of the central 0.25 inch diameter loading roller surface was modelled. Eleven

nodes were placed along the arc representing the lower righthand edge of the roller. Gap

elements, which are the source of the analysis'nonlinearity, connected this surface to the upper

left hand section of the finite element model, which corresponds to the midsection of the upper

surface of the actual test specimen. The upper lefthand quarter of the 0.125 inch diameter

support roller was modelled as a block of 0.0625 inch width and depth with the isotropic

properties of steel (E = 29.0 Msi, v = 0.3). Gap elements connected the lower fight hand section

of the specimen to the loading block. The gap lengths corresponded to the vertical distances

between the lower righthand section of the specimen and the upper lefthand surface ofa 0.125

inch diameter roller. The gap stiffnesses were determined by varying the stiffnesses, running the

model, and observing the final deformations of the rollers and laminate. This variation was
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performeduntil reasonabledeformationresultswere obtained. A single point load representing

the average static failure load was applied at the bottom of the loading block.

Three different material systems were defined:

Isotropic steel:

Isotropic 90 degree IM6/3501-6 tape:

Orthotropic IM6/3501-6 composite:

E = 29.0 Msi, v = 0.3

E = 1.4 Msi, v = 0.45

E11=21.0 Msi, E22 = E33 = 1.4 Msi,

vx2 = vl3 = 0.3, v23 = 0.3

G12 = G13 = 0.75 Msi, G23 = 0.50Msi

The lower loading block mesh consisted of 80 4-noded quadrilateral elements subject to the

plane strain condition and assigned the material properties of steel. The main laminate consisted

of 1600 4-noded quadrilateral elements. The laminate was modelled under both plane stress and

plane strain conditions. The laminate was modelled first with isotropic 90 degree IM6/3501-6

tape properties and then with orthotropic IM6/3501-6 composite properties.

Model Results

The first portion of the finite element analysis focused on examining the smallest sized

specimen configuration (w = 0.400 inches, t = 0.266 inches, (S/t) = 3) under several different

conditions. In each case, an applied loading corresponded to 114.5 ib was assigned to the lower

right node of the steel (plane strain) loading block. The specimen itself was modelled with the

following conditions:

Laminate Element Properties
Case 1: Plane Strain

Case 2: Plane Stress

Case 3: Plane Stress

Laminate Material Properties

Isotropic 90 degree IM6/3501-6 tape

Isotropic 90 degree IM6/3501-6 tape

Orthotropic 90 degree IM6/3501-6 composite

6



Therewaslittle differencesin the laminatelocalstresses(ox,Oy,Z,,y)for the three different

cases. The local stresses were defined with x along the horizontal of the specimen andy along

the vertical of the specimen. A positive shear stress exists when positive x, positivey comer of a

2-D element the element wants to move in the positive x and negative y directions. Table 1

compares the different local stresses for several elements for the three cases described above.

Figure 5 shows the location of the different elements on the mesh. Figures 6 through 8 show the

contour plots of the different stresses.

TABLE 1-- Comparison of Longitudinal, Transverse, Shear Stresses from Finite Element

Analyses

Global Longitudinal Global Transverse Stresses, Global Shear Stresses,

Element

ID

4290

4300

4400

4439

4500

4590

4599

Stresses, Ox (Psi)
Isotropic Isotropic Orthotropic

Plane E Plane o Plane o

8743 8803 8760

6117 6161 6159

1642 1652 1663

-440 -442 -445

-3243 -3280 -3279

-27900 -27430 -27500

-5750 -5814 5805

ov (Psi)
Isotropic Isotropic Orthotropic
Plane _ Plane G Plane G

2.5 1.01 0.9

-177 -177 -173

-1329 -1391 -1371

-250 -247 -256

-5531 -5522 -5461

-30060 -28750 -28770

6.6 2.6 2.5

z_ (Psi)
Isotropic Isotropic Orthotropic

Plane _; Plane o Plane o

3 3 3

57 57 56

145 145 143

1656 1656 1661

622 613 607

12430 12720 12850

41 38 38

The next section will focus on the results of the orthotropic plane stress model. At the

centerline of the specimen, the maximum longitudinal tensile stress on the lower surface

(element 4290, ox = 8760 psi) is substantially lower than the maximum longitudinal compressive

stress on the upper surface of the specimen (element 4590, o× = -27500 psi). However,



examiningthecompressivestressesin theelementsjust belowtheuppersurface,themagnitude

of the compressive stresses (element 4570, _x = -9846 psi, element 4560, crx = -7638 psi) are

approximately the same as those of the tensile stresses near the lower surface. The discrepancy

is due to the immediate contact of the specimen with the upper roller support and the minimal

discretization of the finite element mesh at this particular loading location.

The maximum shear stress was located offthe centerline of the specimen and approximately

at the midplane of the specimen's thicknesses. The maximum shear stress of the orthotropic

plane stress case was approximately 1600 psi.

Again considering the orthotropic plane stress case, at the centerline of the specimen, the

maximum transverse stress is located on the upper surface of the specimen at its centerline

(element 4590, _y = -28770 psi). Moving down through the specimen thickness along the

centerline, the local transverse stresses decline. At the lower surface of the specimen, the

transverse stress is negligible (element 4290, t_y = 0.9 psi). Considering the transverse stresses of

the elements located approximately 10% of the half-specimen length off the specimen centerline

and moving down through the specimen thickness, the magnitudes decrease from -2400 psi

(element 4503, located approximately 20% of the thickness from the upper surface) to-1100 psi

(element 4403, located approximately 50% of the thickness from the upper surface) to -25 psi

(element 4253, located approximately 7% of the thickness from the lower surface).

From a "Strength of Materials" approach, the ratio of maximum transverse stress to maximum

shear stress for the three-point bend test equals twice the span-to-thickness (S/t) ratio [2]. The

maximum transverse stress would appear at the outer surfaces of the specimen's center location

with respect to length. The shear stress distribution would be a parabolic distribution through the

thickness with the maximum stress appearing at the midplane of the specimen's thickness. The
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finite element analysis predicted the maximum tensile stress on the lower surface of the

specimen's centerline (element 4290, o_ = 8760 psi) and the maximum shear stress

approximately at the midplane of the specimen's thickness (element 4439, 1660 psi). For the

modelled specimen configuration (w = 0.400 inches, t = 0.266 inches, (S/t) = 3), the maximum

transverse stress to maximum shear stress ratio should equal 6. Comparing the above stated

stresses, the finite element model predicted the ratio of transverse stress to maximum shear stress

to be a value of 5.28.

The different strengths associated with unidirectional AS/3501 graphite/epoxy composites [7],

similar to the IM6/3501-6 material system which was used in the finite element model, are listed

below.

Longitudinal Properties: OLT--210 Ksi (1447 Mpa) OLC-210 Ksi (1447 Mpa)

Transverse Properties: o-rr- 7.5 Ksi (51.7 Mpa) OTC-- 29.9 Ksi (206 Mpa)

Shear Properties: "rl2- 13.5 Ksi (93 Mpa)

Comparing the different stresses induced in the specimen under a 114.5 lb force, the

specimen's maximum longitudinal stress of 8760 psi corresponds closely to the transverse tensile

strength. The longitudinal compressive stresses near the center roller approach the transverse

compressive strength. However, further refinement of the model, namely further discretization

of the mesh, near the support would be necessary to validate if those stresses are accurate or

erroneous due to a coarse model near a reaction point.
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MATERIALS AND SPECIMEN PREPARATION

Two 30.48 cm by 45.72 cm (12 inch by 18 inch) panels of unidirectional prepreg IM6/3501-6

graphite/epoxy material were layed up and cured in an autoclave according to the manufacturer's

specifications. The nominal cured ply thickness is 0.188 mm (0.0074 inch). Each panel was

constructed of 36 plies.

The two panels were ultrasonically C-scanned after manufacturing to assess the integrity of

the manufacturing process. Each panel exhibited patches of possible voids, located near the

borders of the panels. The first panel exhibited a greater amount of non-uniformity than the

second panel. Using the C-scans as a guide, specimens were cut from the regions of the panels

exhibiting the most uniform C-scan patterns.

Nine different test specimen configurations were used in the static study. Table 2 indicates

the different widths (w) and span-to-thickness (S/t) ratios examined. Different sized

configurations were tested as an initial objective of this study was to determine the minimum-

sized specimen configuration which would consistently generate a transverse tensile failure

under three-point bending.

TABLE 2-- Static Test Specimen Configurations and Number of Test Samples.

Specimen Configurations and Number Tested
Nominal Width, Span-to-thickness Ratio, (S/t) b.c

w (mm)" 3 4 6

10.2 (0.40) A (7) D (10) G (2)

12.7 (0.50) B (10) E (9) ...
15.2 (0.60) C (6) F (10) ...

8

K (3)

M (3)

a Number in parentheses is value in inches where 1 in. = 25.4 mm

b Letter indicates Specimen Configuration

¢ Number in parentheses is number of samples tested
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Thefirst set of static specimens was cut from Panel #1 using a diamond-wheel saw blade.

Edges were not polished before testing so as not to bias results by reducing edge flaws or

possibly internal flaws. Static and fatigue specimens from Panel #2 were cut using a water-

cooled aluminum oxide abrasive wheel (180 grit) then edge ground to their final dimensions.

Specimen sizes were determined per a pre-established cutting plan, which purposely distributed

the different configuration sizes throughout the panel so as not to concentrate a single

configuration to one area of the panel. The specimen cross-sectional dimensions were measured

using ball-point calipers at the center location along the specimen length. A single length

measurement was taken along the centerline of the specimen.

Table 3 shows the average nominal ply thicknesses of the static and fatigue specimens. The

average laminate thickness for the specimens tested from a particular panel and under a

particular loading (static vs fatigue) was divided by the number of plies to obtain a nominal ply

thickness (t). The product of the nominal ply thickness and the manufacturer's supplied fiber

density (1.7325 g/cm 3) was divided into the assumed fiber aerial weight (190 g/m 2) for

IM6/3501-6 to obtain estimated fiber volume fractions. These estimated fiber volume fractions

are compared with experimentally measured fiber volume fractions in Table 3.

TABLE 3--Nominal Ply Thickness and Fiber Volume Fractions, IM6/3501-6 graphite-epoxy.

Panel # 1 Panel #2

Static .,b Static .,b Fatigue a.b

Nominal Ply Thickness, t(mm) 0.188 [0.99] 0.191 [1.0] 0.191 [1.02]
(0.0074) (0.0075) (.0075)

Estimated Vf, % 58.0 ... 57.9 ... 57.7 ...

Measured Vf, % 59.4 [0.84] 59.8 [1.31] ......

a Number in parentheses is value in inches where 1 in. = 25.4 mm
b Number in brackets is Coefficient of Variation

11



Visualexaminationof thespecimensrevealedpitting in themajority of thefatiguespecimens.

In mostinstances,the pitswereapproximatelypinpointin sizeandshallowin depth.In a few

instances,thepitswerelargerin size. Thepitswerelocatedwithin approximatelytheupper25%

of the laminatethicknessasmeasuredfrom theuppersurfaceof thespecimen,which

correspondsto thebottomsurfaceof themanufacturedpanel.Thenumberof pinpoint-sizedpits

in aparticularspecimenwasof theorderof 20to 30. Thepitsweredistributedalongthelength

of thespecimens.Becausethepitswerelocatedon thecompressivesideof specimenswhen

loaded,theywerenot believedto haveasignificanteffecton theresults.

12



EXPERIMENTAL PROCEDURE

Fiber volume measurements were performed per the following ASTM standards: D3171

Fiber Volume by Acid Digestion, D792 Density by Water Displacement, and D2734 Void

Content.

Static transverse tension tests were performed using the three-point flex procedure as

specified in ASTM D790-92, Standard Test Method for Flexural Properties of Unreinforced and

Reinforced Plastics and Electrical insulating Materials. Figure 2 provides a schematic of the test

set-up with relevant dimensions. The fixture was equipped with 6.35 mm (0.25 inch) diameter

loading roller and 3.175 mm (0.125 inch) diameter support rollers. Span-to-thickness (S/t) ratios

of 3, 4, 6, and 8 were used as required for the static tests. The support rollers were located using

the center loading roller as a datum. The specimens were loaded into the fixture with the

midpoint of the specimen aligned under the loading roller. Adjustments to the centering of the

specimen were made by eye. As the specimens were fairly short in length, there was little

extension of an individual specimen beyond the support rollers. All specimens were tested with

the compression face of the specimen corresponding to the bottom of the panel. The fixture was

mounted on a 22.24 k.N (5000 Ib) MTS brand servo-hydraulic universal test frame with an MTS

TestStar digital controller under ambient laboratory conditions, as shown in Figure 3. The test

frame has a current certification of calibration providing traceablility to NIST standards. Static

tests were performed at a constant ram speed of 1.27 mm/min (0.05 in/min) with a stroke range

set at 12.7 mm (0.5 inches). After an individual specimen failure, the specimen was removed

and the moment arm distance from the centerline of the edge support roller to the location of

tensile failure, defined as l, measured. The bending moment was calculated as the product of

13



half the failure load P and the moment arm (/). The nominal transverse tensile stress was

calculated as

( P)t
or= _(j,(2)wt3

(3)

using the nominal cross-sectional dimensions w and t. Local cross-sectional dimensions were

taken close to the failure location.

Fatigue tests were performed at a variety of frequencies and amplitudes under load control.

The specimens were mounted in the same machine under the same procedure as described above

for the static specimens. Fatigue tests were performed at a constant ram speed of speed of 1.27

mm/min (0.05 in/min) with a stroke range set at 12.7 mm (0.5 inches). The average ultimate

transverse tensile strength (UTS) obtained from the Panel #2 "A" configuration static specimens

(w = 10.2 mm and (S/t) = 3) was used to calculate the load levels for fatigue. The majority of

fatigue tests were run under the conditions R = 0.1, where R equals the ratio of the minimum

applied load to the maximum applied load. Tension-tension fatigue tests were performed at

75%, 80%, 85%, 95% UTS levels with a frequency ofe_ equal to 5 Hz. Additional tests were

performed at co equal 20 Hz to examine the effect of frequency. A few tests were run at R = 0.5

to examine the effect of load ratio. Tests were stopped at 105 cycles if no failure occurred.

Several tests were run beyond that limit and stopped at 106 cycles if no failure occurred. The

same operator conducted all the fatigue tests.

14



EXPERIMENTAL RESULTS

Material Properties of Fiber Volume

The fiber, resin, and void volume fractions were determined according to ASTM

specifications assuming a resin density of 1.262 g/cm 3 and fiber density of 1.7325 g/cm 3. Tests

were performed on three specimens from each of the two panels. The measured fiber volume

values are given in Table 3 with the coefficient of variation values shown in brackets. The

estimated fiber volume fractions are slightly lower than the measured values. The high

variability in laminate thickness contributes to the deviation in the estimated and measured fiber

volume fraction values.

Transverse Tensile Static Stren_h Measurements

A summary of the results of the static tests is seen in Table 4. Individual specimen data (static

loading) are found in Table 5. The nominal strengths are listed for the different configurations

using the nominal cross-sectional dimensions of the individual specimens. Strengths are also

listed for the different configurations using the local cross-sectional dimensions measured as

described in the Experimental Procedure section. The coefficients of variation of the strength for

the different configurations are also given. The number of specimens tested per configuration is

given in Table 2 (see page 10).

All the specimens exhibited a transverse tensile failure regardless of the width or span-to-

thickness ratio. For the specimens of (S/t) equal 3, the nominal transverse tensile strength

increased as the width increased. For the specimens of nominal width 10.2 mm (0.4 in), there

was little difference in strength except when (S/t) equaled 6. Only two specimens of that

particular configuration were tested. The coefficient of variations (CV) for the different

15



configurations ranged from 7.8, corresponding to Configuration G ((S/t) = 6, W = 10.2 mm) to

33% for Configuration C ((S/t) = 3, W = 15.2 mm). The average CV for the nominal transverse

tensile strength for Panel #1 was 22.1%. Because of the large scatter in strength of the different

sized specimens from Panel #1, specimens for the smaller configurations (A & B) were tested

from the second panel. The overall nominal transverse tensile strength was considerably higher

(87.5 MPa) in Panel #2 compared to Panel #1 (61.3 MPa). Five specimens of configuration A

and B were each tested. The CV's were considerably smaller with an overall average CV of

8.0% for Panel #2 static transverse tensile strength.

Figures 9 and 10 show the static strengths for the various specimens from Panel #1 as a

function of the nominal cross-sectional area and the ratio of(S/t). Each plot shows a great deal

of scatter for a given width or (S/t) ratio. Assuming a volume dependency on the strength, the

strength should decrease with increasing cross-sectional area for a given width. This trend is not

TABLE 4--Summary of Nominal and Local Transverse Tensile Strength in MPa

for 90 ° bend tests, IM6/3501-6 graphite-epoxy.

Nominal Transverse Tensile Strength
Panel # 1 Panel #2

(s/t) (s/t)
Width, w (mm) 3 4 6 8 3

10.2 56.3 [15.91 59.6 [13.71 68.9 [15.7] 59.5 [9.98] 91.7 [8.9]

12.7 58.5 [15.6] 63.1 [18.8] ...... 82.7 [7.1]
15.2 67.5 [23.6] 67.5 [14.3] ... 52.4 [6.58] ...

Local Transverse Tensile Strength
Panel #1 Panel #/2

(s/t) (sit)
Width, w (mm) 3 4 6 8 3

10.2 57.7 [13.3] 60.3 [31.5] 69.6 [8.35]

12.7 59.1 [15.9] 63.7 [28.6] ...

15.2 67.9 [33.1] 68.2 [13.6] ...
a Number in brackets is Coefficient of Variation

60.2 [9.95] 91.0 [8.8]

... 82.0 [6.8]

52.9 [12.6] ...
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TABLE 5-Individual Specimen Data for Transverse Tensile Strength, 90 ° Bend Tests.
PANEL 1 RImULTS

Nmnkud _ NIqmlmd
Specimen tlR) _w _t WIdth, w _t FId_llLoed. P Mmmm(Anl_l _rNe.= CY IIB'_(r CY

Ioe |m,,,I (ram) (N_ (an) pq (me} _) t_} oae,) l'_}
SA4 3 10.26 6.83 10.24 6.82 1108 9.19 63.8 64.2
SA5 3 10.26 6.76 10.27 6.75 8,94 11.73 67.2 67.2
SA7 3 10.26 6.93 10.26 6.47 925 7.33 41.2 47.4

SA8 3 10.29 6.91 10.26 0.89 970 9.73 57.6 58.1
SA9 3 10.29 6.78 10.26 6.77 943 8.36 50.0 50.2

SA10 3 10.31 6.73 10.2_ 6.71 974 9.31 58.2 58.9
roll 64.3 1U 67.7 13.4

SB1 3 12.47 6.83 ...... 1259 10.64 68.4 ...
SB2 3 12.47 6.78 ...... 1232 6.99 45.0 ...
s._ 3 12.80 6.. 1_ 931 500

3 12.76 6., 1/,':I8 61_2 1_0 6.07 _.1 ,di3
SB5 3 12.80 6.76 12.78 6.73 1139 9.65 56.4 57.0

SB6 3 12.80 6,76 12.83 6.76 1343 9.22 63.6 63.5
SB7 3 12.80 6.93 12.80 6.91 1163 10.98 63.3 63.8
SB8 3 12.80 6.88 12.80 6.88 1214 11.98 71.6 71.9

SB9 3 12.80 6.78 12.80 6.76 1299 9.56 63.3 63.7
SB10 3 12.80 6.91 12.78 6.89 1112 8.14 44.4 44.8

1221 68.8 IILII 611.1 11.11

SC1 3 15.19 6.81 15.19 6.80 1730 12.90 95.1 96.2
SC2 3 15.21 6.78 15.18 6.79 1512 6.03 39.1 39.1

SC3 3 15.34 6.88 15.34 6.87 1481 10.02 61.3 61,4
SCA 3 15.16 6.86 15.14 6.82 1290 10.41 58.5 57.1
SC5 3 15.14 6.73 15.18 6.72 1174 11.61 59.6 59,7

SC_ 3 15.34 6.86 15.29 6.84 1801 12.53 03.9 94.8
14.ql8 $7.8 23.6 87.8 33.t

SD1 4 10.13 6.78 ...... 752 12.24 59.2 ...

S_ 4 10.13 6.81 ...... 841 12.07 64.8 ...
s_ 4 lO.13 6.78 m 9., 62.4
so, 4 1o.29 6.93 ldlh 61_2 7_ 14.73 684 6_o
SD6 4 10.21 6.93 10.19 6.02 974 13.69 81.5 82.1
soe 4 10.3 6.93 10.:0 6.86 7",,1 12.44 56.4 56.1
s07 4 10.21 6.73 10.20 6.72 7_ 9.94 _.6 45.7
SD8 4 10.21 6.73 10.21 6.71 934 14.14 85.7 98.2
SD9 4 10.26 6.76 10.20 6.76 543 12.19 42.4 43-6

SDI0 4 10.24 6.81 10.21 6.79 538 11.73 39.9 40.3
75t $9.S 13.7 G0.3 31.1;

SE1 4 12.93 6.78 1Z88 6.75 596 11.58 34.8 35.3
SE3 4 12.93 6.81 12.90 6.78 1094 13.92 76.3 77.0

SE4 4 12.80 6.86 12.80 6.83 1063 17.41 92.2 93.0
SE5 4 12.75 " 6.93 12.72 6.91 850 14.38 59.8 60.4

SE6 4 12.73 8.86 12.73 6.84 987 10.11 50.0 50.3
SEt 4 12.75 6.73 12.76 6.69 752 11.28 44.0 44.5
SEB 4 12.78 6.73 12.73 6.70 _)8 13.39 62.3 63.1

SE9 4 12.78 6.76 12.75 6.75 1014 13.97 72.9 73,1
SE10 4 12.75 6.81 12.78 6.80 850 17.68 76.3 76.4

800 G3.2 18.8 83.7 28.$

SF1 4 15.29 6.81 15.29 6.77 1060 13.08 58.2 58.8
SF2 4 15.32 6.81 15.32 6.79 1317 14.98 83.3 93.7

SF3 4 15.32 6,78 15.34 6.78 1339 10.29 58.7 59.6
SF4 4 15.34 6.73 15.32 6.72 1054 14.58 56.4 66.7
SF5 4 15.19 6.98 15.18 6.91 1156 15.01 70.8 71.9

SF6 4 15.16 6.93 15.16 6.81 885 14.58 54.7 55.0
SF7 4 15.19 6.73 15.14 6.71 1245 12.01 65.2 65.9
SF8 4 15.16 6.73 15.13 6.67 1193 15.30 79.0 80.6

SF9 4 15.16 8.78 15.14 6.75 947 17.20 70.1 70.9
SF10 4 15.16 6.81 15.13 6.79 987 16.51 69.6 70.0

1116 G7.9 141.3 18.2 13.6

SG1 6 10.11 6.93 10.08 6.90 480 24.58 72.8 73.7
SG2 6 10.11 6.73 10.08 6.73 507 19.65 65.3 65.5

M.0 16.7 $S.6 8.35

SK1 8 10.29 6.88 10.29 6.86 356 30.05 65.8 66.3
SK2 8 10.29 6.71 10.25 6.67 329 25.07 53.5 ' 54.3

SK3 8 10.29 6.76 10.25 6.74 311 29.88 59.4 50.0
332 (L_.8 1O.O 60.2 9.96

SM1 8 15.19 6.91 15.19 6.87 587 22.92 55.7 55.4

SM2 8 15.24 6.71 15.19 6.68 498 25.98 56.7 57.3
SM3 8 15.21 - 8.78 15.19 6.74 409 25.40 44.9 45.3

41m 62.4 6.88 63.o 12.6

PANEL 2 ReMJLTS
PSA11 3 10.21 6.71 10,21 6.76 1379 9.98 89.9 68.6
PSA12 3 10.19 6.93 10.21 6.93 1339 9.93 93.0 82.8

PSA13 3 10.25 6.86 10.21 6.91 1656 9.93 102.4 101.4
PSA14 3 10.24 6.65 10.21 6.65 1592 9.91 98.3 97.8
PSA15 3 10.19 6.93 10.24 6.65 1579 8.64 86.0 853

1810 91.9 8.91 91.2 8.84

PS811 3 12.67 6.65 12.71 6.67 1744 9.73 90.7 90.0

PSB12 3 12.70 6.78 1Z71 6.82 1993 7.90 80.8 79.9
PSB13 3 12.70 6.81 12.71 6.83 1966 8.51 86.3 64.6

PSB14 3 12.70 6.81 12.71 6.93 1837 8.61 80.6 80.0
PSB15 3 12.70 6.81 12.73 6.78 1552 9.47 75.0 75.4

1816 82.E 7.10 82.0 $.78
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seen in Figure 10. This does not imply there is no volume dependency. Rather, because of the

unusual amount of scatter, a volume dependency may be obscured.

Figures 9 and 10 show the static strengths for the various specimens from Panel #1 as a

function of the nominal cross-sectional area and the ratio of (S/t). Each plot shows a great deal

of scatter for a given width or (S/t) ratio. Assuming a volume dependency on the strength, the

strength should decrease with increasing cross-sectional area for a given width. This trend is not

seen in Figure 10. This does not imply there is no volume dependency. Rather, because of the

unusual amount of scatter, a volume dependency may be obscured.

Figure 11 shows the probability distribution of the static transverse tensile strength based on

the data from Panel #1. When generating the probability distribution of the strength using

Weibull scaling laws, it is best to compare only specimens of similar configurations. However,

from a statistical point of view, it is also desirable to have a large number of specimens to

evaluate. As each specimen failed in the same mode - transverse tensile failure, it is reasonable,

albeit not optimal, to evaluate all of the specimens (n = 59) from Panel #1 as one data set. Using

a linear regression technique, the Weibull parameters were found to be m = 5.32 and oc = 66.9

Mpa (9.71 ksi). When considering the specimens with a S/t ratio of 3 (n = 22) and 4 (n = 29)

individually, the Weibull parameters were found to be m = 5.00, crc = 65.7 Mpa (9.53 ksi) and m

= 4.90, crc= 69.1 Mpa (9.90 ksi) respectively. The results of the static transverse tension

strengths are comparable with those found by other investigators for a similar material system

tested under three-point bending but with thinner laminates and larger (S/t) ratios; O'Brien and

Salkepar, evaluating 33 AS4/3501-6 specimens found m and cr, to be 7.63 and 61.1 Mpa (8.87

ksi) respectively [5]. The larger m value associated with our data is consistent with the greater

scatter of the data. A plot of the probability distribution for the 10 specimens from Panel #2 is
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shown in Figure 12 along with the Weibull parameters.

to be 13.0 and 92.2 Mpa (13.38 ksi) respectively.

The values ofm and _ were found to be

Transverse Tensile Fatigue Stren_h Measurements

The results of the fatigue testing can be seen in Figure 13. Individual specimen data (fatigue

loading) are found in Table 6. Forty eight different specimens were tested under the conditions

of 20 Hz, R = 0.1. At a frequency of 5 Hz, six and five specimens were tested at R = 0.1 and R =

0.5 values respectively. Many tests were stopped at 105 and 10 6 cycles. The number in

parentheses represents the number of specimens tested at 03= 20 Hz, R = 0.1 that were stopped at

10 5 or 10 6 cycles. The number of tests stopped at 105 or 10 6 cycles as well as a fuller description

of the testing parameters are given for those specimens that were tested at conditions other than

03 = 20 Hz, R= 0.1.

Figure 14 shows four typical specimen failures along with the number of cycles-to-failure for

the particular specimens. The specimens all exhibited transverse tensile failures on the lower

surface. The final fracture surface exhibited a variety of patterns with the crack "kicking" iett or

right from the initial failure site. Regardless of whether the final fracture pattern through the

thickness of the specimen was nearly vertical or angled, the moment arm I was measured as the

distance from the centerline of the edge support roller to the location of tensile failure along the

bottom surface of the specimen. The distance 5 represents the distance from the centerline of the

center loading roller to the location of tensile failure as measured along the bottom surface of the

specimen.
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TABLE 6--IndividualSpecimenDatafor TransverseTensionFatigue,90° BendTests.

Specimen Frequency Load
ID# ®, (Hz) R Ratio (S/t)

FA12 20 0.1 0.95 3
FA16 20 0.1 0.95 3

FA20 20 0.1 0.95 3
FA2.3 20 0.1 0.95 3

FA27 20 0.1 0.95 3
FA28 20 0.1 0.95 3

FA31 20 0.1 0.95 3

FA38 20 0.1 0.95 3
FA47 20 0.1 0.95 3

FA52 20 0.1 0.95 3
FA62 20 0.1 0.95 3

FA63 20 0.1 0.95 3

Nominal Local

W_dth, w Width, w Thickness, t Span. $ Failure Locatkm Cycles 4o-

(rnm) (mm) (ram) (rnm) 5 (mm) Failure. Nf
10.16 10.21 6.81 20.42 1.49 1420
10.16 10.21 6.76 20.27 0.86 210

10.16 10.21 6.88 20.65 ... 1000000 °
10.16 10.19 6.78 20,35 ... 1000000 *

10.16 10.21 6.93 20.80 ... 100000 *
10,16 10.19 6,91 20,73 0.60 7920

10.16 10.17 6.81 20,42 ... 100000 *

10.16 10.19 6.93 20,80 0.94 1797
10.16 10.20 6.90 20.70 12.74 100000 °

10.16 10.19 6.78 20.35 1.28 34
10.16 10.26 6.83 20.50 0.54 2417

10.16 10.24 6.81 20.42 0.67 306
FAll 20 0.1 0.85

FA13 20 0.1 0.85
FA17 20 0.1 0.85

FA24 20 0.1 0.85
FA26 20 0.1 0.85
FA29 20 0.1 0.85

FA30 20 0.1 0.85
FA32 20 0.1 0.85

FA33 20 0.1 0.85

3 10.16 10.24 6.83 20.50 0.71 1630

3 10.16 10.29 6.83 20.50 ... 1000000 °
3 10.16 10.21 6.90 20.69 0.71 720

3 10.16 10.17 6.55 19.66 ... 1000000 °
3 10.16 10.21 6.78 20.35 ... 1000000 *
3 10.16 10.19 6.90 20.69 5.58 28

3 10.16 10.19 6.86 20.57 ... 1000000 °
3 10.16 10.21 6.85 20.54 1.55 352

3 10.16 10.19 6.81 20.42 0.77 310
FA66 20 0.1 0.85 3

FA68 20 0.1 0.85 3
FA70 20 0.1 0.85 3

FA72 20 0.1 0.85 3
FA74 20 0.1 0.85 3

12.70 12.75 6.76 20.27 1.26 3484

12.70 12.75 6.92 20.76 0.14 696
12.70 12.78 6.86 20.57 ... 100000 *

12.70 12.76 6.78 20.35 0.63 643
12.70 12.75 6.91 20.73 0.00 100000 *

FA4 20 0.1 0.80 3
FA6 20 0.1 0.80 3

FA9 20 0.1 0.80 3
FA19 20 0.1 0.80 3

FA22 20 0.1 0.80 3
FA36 20 0.1 0.80 3

FA43 20 0.1 0.80 3
FA50 20 0.1 0.80 3

10.16 10.24 6.86 20.57 2.58 130000
10.16 10,24 6.74 20.23 0.11 5150

10.16 10.20 6.86 20.65 4.74 202100
10.16 10.19 6.91 20.73 1.82 73

10.16 10.21 6.83 20.50 0.65 100000 *
10.16 10.21 6.79 20.38 ... 100000 °

10.16 10.19 6.85 20.54 0.86 3675
10.16 10.21 6.82 20.46 2.36 361

FA3 20 0.1 0.75 3 10.16
FA8 20 0.1 0.75 3 10.16

FA18 20 0.1 0.75 3 10.16
FA21 20 0.1 0.75 3 10.16

FA37 20 0.1 0.75 3 10.16
FA42 20 0.1 0.75 3 10.16

FA48 20 0.1 0.75 3 10.16

FA51 20 0.1 0.75 3 10.16

10.21 6.73 20.19

10.17 6.90 20.69

10.17 6.91 20.73
10.19 6.83 20.50

10.20 6.93 20.80
10.17 6.82 20.46

10.19 6.91 20.73
10.20 6.78 20.35

... 1000000 °

... 1000000 °

... 100000 *

.., 100000 *
0.33 81089

0.74 65
... 100000 *

... 100000 *
FA1 5 0.1 0.85 3 10.16

FA2 5 0.1 0.85 3 10.16
FA39 5 0,1 0.85 3 10.16

FA41 5 0.1 0.85 3 10.16
FA46 5 0.1 0.85 3 10.16

FA53 5 0.1 0.85 3 10.16

10.21 6.83 20.50 0.04 6470

10.22 6.81 20.42 1.63 210
10.21 6.93 20.80 1.05 332

10.21 6.85 20.54 3.35 32
10.22 6.78 20.35 ... 100000 *

10.22 6.86 20.57 0.43 11
FA40 5 0.5 0.75 3 10.16

FA49 5 0.5 0.75 3 10.16
FA56 5 0.5 0.85 3 10.16

FA60 5 0.5 0.85 3 10.16
FA64 5 0.5 0.85 3 10.16

10.17 6.83 20.50 ... 100000 °

10.24 6.91 20.73 0.48 4682
10.24 6.81 20.42 1.49 68877

10.25 6.90 20.69 0.24 8
10.24 6.91 20.73 ... 100000 °

Note: * indicates test was stopped at 10 3 or 10 6 cycles.
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Failure Location Influence on Strength

The transverse tensile failure location of over 80% of the specimens was within 20% of the

distance from the centerline of the center loading roller to the centerline of the support rollers.

Figure 15 shows the distribution of the normalized failure location where the normalized failure

location is defined as the distance from the center loading roller to the tensile failure location (6)

divided by half the span length (0.55'). Two specimens, including FA29 (N=28 cycles) failed

under the support roller. In Figure 16, the cycles-to-failure are shown for the various strength

ratios as a function of the normalized failure location.
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DISCUSSION

Testingof theoptimum-sizedconfiguration consistently yielded transverse tensile failures yet

still exhibited a great deal of scatter. It was anticipated the smallest configuration would yield

transverse tensile failures as from a "Strength of Materials" approach, the ratio of transverse

tensile stress to shear stress for a rectangular cross-section subjected to three-point bending is

twice the span-to-thickness ratio [4]. Considering the transverse tensile strength of 90 °

graphite/epoxy laminates is of similar magnitude as the shear strength (oar- 51.7 MPa, "rt:- 93

MPa) and considerably smaller than the transverse compressive strength (OTC_ 206 MPa), it

would be reasonable to expect failure to initiate at the tensile surface [7]. Further, the finite

element analysis of the smallest configuration under three-point bending loaded with the average

experimental failure load showed the maximum transverse tensile stress was comparable to the

transverse tensile strength. It is unclear then whether the large scatter in the static strengths is

due to material variability, i.e. inherent presence of flaws or voids, or manufacturing variability,

i.e. improper or poor processing of the panels themselves. Considering other researchers have

found considerably less scatter when testing 900 laminates of comparable material systems in

three point bending [4,5], it is probable the scatter is due to the manufacturing variability of the

particular panels from which the specimens were taken. There did not appear to be a correlation

between the failure loads and the number of pits present in a particular specimen. Considering

the degree of scatter of transverse strengths in the specimens from Panel # 1, it was decided that

fatigue specimens would be taken only from Panel #2, whose specimens exhibited considerably

less scatter those of Panel #1 under static loading.

Before starting the fatigue testing, certain trends were considered likely to occur. First, a

steep S-N curve was considered possible. Although a high moduli graphite/epoxy material
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systemwasbeingtested,thefiberswereorientedin the90oorientation,ratherthana 0°

orientation.Therefore,thematrixwould likely seemorestrain.As thetestedlaminatesare

composedsolelyof 900plieswithoutthebenefitof any 'constraining'plies to constrainmatrix

cracking,oncethe crack growth reached a Characteristic Damage stage, defined by stable crack

growth, damage would progress quickly to failure [8]. Recognizing that fatigue strain limit

decreases with an increase of off-axis angled plies, opening displacement mode would probably

be more important than a sliding displacement occurring parallel to the fibers. Another

expectation of the testing was that some specimens would fail by transverse shear failures due to

the small (S/t) ratio. Shorter lives were also anticipated due to the testing occurring in load

control; displacement and energy control loading have been shown to tend to produce longer

lives [9].

The original fatigue testing was to be performed at 5 Hz and 0.1 Hz and tests stopped if

specimens did not fail after 106 cycles. However, initial testing at 5 Hz produced fatigue lives of

106 cycles, even at high load ratios. The test program was then modified so tests were performed

primarily at 5 Hz and stopped at 105 cycles. Examining the S-N curve in Figure 8, it can be seen

that the testing produced a great deal of scatter. The number of tests stopped at 105 and 106

cycles is given in parentheses. Looking only at the highest load ratio, the fatigue lives range

from an order of l01 to l06 cycles. A similar trend can be seen at the other load levels. The

range of scatter seems to decrease slightly when looking at the lower load levels. Comparing the

data at (P/Puk) equals 0.95 and 0.75, one can see the fatigue lives at the lower load level are

generally longer than at the higher load level.

there seems to be little frequency dependency.

the large amount of overall scatter of the data.

Comparing the data for R=0.1 at 20 Hz and 5 Hz,

However, any dependency may be obscured by

Comparing the fatigue data associated with a
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frequencyof 5Hz andR = 0.1andR = 0.5values,again,thereseemsto belittle distinction

betweenthetwo loadings. However,it wouldbeunwiseto drawanystrongconclusionsfrom

this data,asonceagainthereis too muchscatterevident.

By takingspecimenssolelyfrom Panel#2, it washopedthat scatterdueto manufacturing,as

seenin Panel#1's static strength data, would be minimized. However, if the static results of the

specimens from Panel #2 were skewed due to that particular portion of the panel being of very

good quality compared to the rest of Panel #2, then the fatigue lives could exhibit substantial

scatter. However, this does not seem very likely as the specimens were cut from the portion of

the panel with the most uniform C-scan patterns. Other possible sources of scatter could be the

lack of edge polishing of the specimens. However, this was purposely not performed so as to

mimic 'real-world' structures, which would likely not have their edges polished. Overall, this

preliminary study shows that further tests should be performed in order to determine whether the

variability of the data was due primarily to panel and/or specimen preparation or due to material

variability, inherent in the 900 bend specimen.

24



CONCLUSIONS

Researchershavefoundin bondedskin/stiffener/flamecompositereinforcedpanels,failure

initiatedin adhesivepocketatthe interfaceof theskin/stiffenerandpropagatedastransverse

crackin skin laminateor flangelaminateneartheflangetip. A finite elementanalysiswas

performedto evaluatethevalidity of theresult,basedona"Strengthof Materials"approach,that

theratioof themaximumtransversetensilestressto maximumshearstressequalstwice the

span-to-thickness(S/t)ratio. Modellingasmallthree-pointbendspecimen,correspondingto a

specimenwith width = 10.2mm,t = 6.76mm, (S/t)= 3, anonlinearstaticfinite elementanalysis

wasperformed.Thefinite elementmodelproducedaratioof thepredictedmaximumtransverse

tensilestressto predictedmaximumshearstressof 5.28whereasthe"strengthof materials"

approachfor thesamesizedconfigurationwouldpredicta ratioof 6. Thepredictedmaximum

longitudinaltensilestresswascomparableto thetransversetensilestrength.However,the

maximumlongitudinalcompressivestress,locatedjust underthecentralroller, wasalso

comparableto thetransversecompressionstrength.Furtherdiscretizationof theexistingfinite

elementmodelnearthecentralroller contactpoint shouldbeperformed.

An experimentalinvestigationof thetransversetensilestrengthof IM6/3501composite

materialswasthenperformedonspecimenssubjectedto three-pointbendingunderstaticand

fatigueloading. In thisstudy,aparametricstudyof(S/t) effectswasperformedexperimentally

to determinean"optimum" configurationwhereoptimumwasdefinedasthesmallest

configurationwhich consistentlyfailed in transversetensionwhensubjectedto three-point

bendingunderstaticloading. Theoptimumconfigurationwasfoundto bespecimenswith

nominaldimensionsof (S/t) equal3 andwidth equal10.2mm(0.4 inches)."Fatigue testing under

three-point bending was performed on specimens of the optimum configuration. The S-N data
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showedagreatdealof scatter.At this time,it isunclearwhetherthe scatterin thedatais due

primarily to materialvariability (i.e. thepresenceof voids or flaws)or manufacturingvariability

(i.e.improperpreparationof panelsand/orspecimens).

Futurework shouldbeginwith tensionfatiguetestingundersimilar testconditionsof 90

degreelaminatestakenfrom Panel#2. Thiswouldprovideinsightinto the integrityof thethree-

point bendtestprocedure.Additional fatiguetestingshouldalsoincludetestingunderthree-

pointbendingof similar-sizedspecimensasthetransversebendingspecimensusedin this study

takenfrom panelsmanufacturedby differentsources.Thesetestswouldbeperformedat similar

conditionsasthecurrentstudy. Testingof thinnerlaminatesperformedundersimilarconditions

shouldalsobeundertakento monitorto assesssizingeffectsdueto thicknessof the laminateand

clumpingof same-angleplies. Periodicmonitoringof theedgesandcrackgrowthwouldbe

beneficialin furtherunderstandingof thefatiguegrowth. A comparisonof theseresultsmay

provideunderstandinginto whetherthescatterobservedin thisstudyis dueto material

variability or manufacturingvariability. If thedataproducedlessscatter,fatiguegrowth laws

couldpossiblybedetermined.

26



ACKNOWLEDGMENTS

Thiswork was initiated as a result of the NASA-ASEE Summer Faculty Fellowship program.

This work was funded in part by NASA Langley Research Center through grant NAG-l-1773.

Special thanks go to Drs. T.K. O'Brien of the Mechanics of Materials Branch, NASA LaRC and

P.J. Minguet of the Boeing Defense & Space Group, Helicopters Division, Philadelphia, PA as

well as S. and R. Coguill of the Composites Materials Research Group (CMRG) of the

University of Wyoming, Laramie, WY.

27



REFERENCES

[1] Minguet, P.J., Fedro, M., O'Brien, T.K., Martin, R., Ilcewicz, L., Awerbuch, J., and Wang,

A., "Development of a Structural Test Simulating Pressure Pillowing Effects in a Bonded

Skin/Stringer/Frame Configuration," Presented at Fourth NASA/DoD Advanced

Composite Technology (ACT) Conference, NASA-CP 3229, Salt Lake City, UT, 1993, pp.

863-880.

[2] Minguet, P.J. and O'Brien, T.K., "Analysis of Composite Skin/Stringer Bond Failure Using

a Strain Energy Release Rate Approach," Presented at 1995 ICCM Conference, Vancouver,

August 1995.

[3] Fatigue of Composite Materials, K.L. Reifsnider, Ed., Elsevier Science Publishers B.V.,

1990, pp. 105-158.

[4] Adams, D.F., King, T.tL, and Blackketter, D.M., "Evaluation of the Transverse Flexure

Test Method for Composite Materials," Composite Science and Technology, Elsevier

Science Publishers, Ltd., England, 1990, pp. 341-353.

[5] O'Brien, T.K. and Salpekar, S.A., "Scale Effects on the Transverse Tensile Strength of

Graphite/Epoxy Composites," Composite Materials: Testing and Design (Eleventh

Volume), ASTM STP 1206, E.T. Camponeschi, Jr.,Ed., American Society for Testing and

Materials, Philadelphia, PA 1993, pp. 23-42.

[6] Weibull, W., "A Statistical Theory of the Strength of Materials," Ing. Vetenskaps Akad.

Handl. (Royal Swedish Institute Engineering Research Proceedings), NR151, 1939.

[7] Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, Technomic Publishing

Company, Lancaster, PA, 1980, pp. 293-294.

28



[8] Reifsnider, K.L., Henneke, E.G., Stinchcomb, W.W., and Duke, J.C., in "Mechanics of

Composite Materials, Recent Advances, " Z. Hashin and C.T. Herakovich, Eds., Pergamon

Press, New York, 1983, pp. 399-420.

[9] Fatigue of Composite Materials, K.L. Reifsnider, Ed., Elsevier Science Publishers B.V.,

1990, pp. 158-161

29



Deformed Configuration under

Pressure Loading _... ..... "'"'"'.,$1 S "',.

_--2;_ /L---_-_-=:::.-" 1 "--2-2225" I

._,_ T,,," I I [i _.,"1 / I il .I',,'1
,t':'--i_,, " L,'" r" ' _,'"

Figure 1. Illustration of Pressure Pillowing in a Pressurized Fuselage

Fracture Location PQ_ '_/\

_1 "a,
t ©

l 6

I.. S
I"

Center Loading Roller

o\
Edge Support Roller

Figure 2. Schematic of Test Set-up
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Figure3. Three-PointBendTestSet-up
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Figure 4. Finite Element Mesh
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Figure 14. Representative Transverse Tension Fatigue Failures
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